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CONS P EC TU S

T he understanding of the structural and thermal properties of membranes, low-dimensional flexible systems in a space of higher
dimension, is pursued inmany fields from string theory to chemistry and biology. The case of a two-dimensional (2D) membrane in

three dimensions is the relevant one for dealing with real materials. Traditionally, membranes are primarily discussed in the context of
biological membranes and soft matter in general. The complexity of these systems hindered a realistic description of their interatomic
structures based on a truly microscopic approach. Therefore, theories of membranes were developed mostly within phenomenological
models. From the point of viewof statisticalmechanics,membranes at finite temperature are systems governed by interacting long-range
fluctuations.

Graphene, the first truly two-dimensional system consisting of just one layer of carbon atoms, provides a model system for the
development of a microscopic description of membranes. In the same way that geneticists have used Drosophila as a gateway to probe
more complex questions, theoretical chemists and physicists can use graphene as a simple model membrane to study both
phenomenological theories and experiments. In this Account, we review key results in the microscopic theory of structural and thermal
properties of graphene and compare them with the predictions of phenomenological theories. The two approaches are in good
agreement for the various scaling properties of correlation functions of atomic displacements. However, some other properties, such as
the temperature dependence of the bending rigidity, cannot be understood based on phenomenological approaches. We also consider
graphene at very high temperature and compare the results with existing models for two-dimensional melting. Themelting of graphene
presents a different scenario, and we describe that process as the decomposition of the graphene layer into entangled carbon chains.

Introduction
Understanding the structural and thermal properties of two-

dimensional (2D) systems is of great interest in many fields

including mechanics, statistical physics, chemistry, and

biology.1 Traditionally, it was discussed mainly in the con-

text of biological membranes and soft condensed matter.

The complexity of these systems hindered any truly micro-

scopic approach based on a realistic description of inter-

atomic interactions. Phenomenological theories of mem-

branes1,2basedonelasticity3 revealnontrivial scalingbehavior

of physical properties, like in- and out-of-plane atomic dis-

placements. In three-dimensional (3D) systems, this type of

behavior takes place only close to critical points,4 whereas in

2D this occurs at any finite temperature. The discovery of

graphene,5 the first truly 2D crystal made of just one layer of

carbonatoms,providesamodel systemforwhichanatomistic

description becomes possible. The interest for graphene has

been triggered by its exceptional electronic properties (for

review, see refs 2 and 5), but the experimental observation

of ripples in freely suspended graphene6 has initiated a
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theoretical interest also in the structural properties.2,7 Ripplesor

bending fluctuations have been proposed as one of the

dominant scattering mechanisms that determine the electron

mobility in graphene.2 Last but not least, the structural state

influences the mechanical properties that are important for

numerous potential applications of graphene.8�10

Graphene is a crystallinemembrane, with finite resistance to

in plane shear deformations, contrary to liquid membranes as

soap films. Moreover, for graphene, this resistance is extremely

high since the carbon�carbon bond is one of the strongest

chemical bonds in nature. The Young modulus per layer of

graphene is 350N/m, anorder ofmagnitude larger than that of

steel.10,11 Phenomenological theories just assume that the

membrane thickness is negligible in comparison to the lateral

dimensions. Once a microscopic treatment is allowed, one can

also distinguish between, e.g., single layers and bilayers.12

The aim of this Account is to summarize the contribution

of microscopic treatments of graphene as the simplest

(prototype) membrane to our general understanding of 2D

systems. To this purpose, we first review the main results of

phenomenological theories, particularly those that can be

directly compared to results of atomistic approaches.

Phenomenological Theory of Crystalline
Membranes
The standard theory of lattice dynamics is based on the

harmonic approximation assuming atomic displacements

from equilibrium to be much smaller than the interatomic

distance d. For 3D crystals, this assumption holds up tomelting

according to theempirical Lindemanncriterion. For 2Dcrystals,

the situation is so different that Landau and Peierls suggested

in the 1930s that 2D crystals cannot exist. Later, their qualita-

tive arguments weremademore rigorous in the context of the

so-called Mermin�Wagner theorem (see references in ref 6).

Since graphene is generally considered to be a 2D crystal, this

point needs to be clarified first.

Lattice Dynamics of Graphene. By assuming that atomic

displacements uB satisfy the condition

uBn, j
2D E

, d2 (1)

where n labels the elementary cell and j the atomswithin

the elementary cell, we can expand the potential energy

V(RB) up to quadratic terms (harmonic approximation):

V (RBn, j) ¼ V (RB
(0)
n, j)þ

1
2 ∑

n, n0 i, jRβ
ARβ
ni, n0 ju

Rβ
ni u

Rβ
n0 j (2)

where thematrix Â is the force constantmatrix, RBnj= RBnj
(0)þ

uBnj and RBnj
(0) = rBn þ FBj where rBn are the vectors of the 2D

Bravais lattice and FBj are basis vectors. Lattice vibrations

are then described as superposition of independent

modes, called phonons, characterized by wavevector qB
and branch number ξ = 1,....,3νwhere ν is the number of

atoms per unit cell. The squared phonon frequencies

ωξ
2(qB) are the eigenvalues of the 3ν � 3ν dynamical

matrix

DRβ
ij (qB) ¼ ∑

n

ARβ
0i, njffiffiffiffiffiffiffiffiffiffiffi
MiMj

p exp(iqB 3 rBn) (3)

whereMj is themass of atom j. For graphene,Mj=M is the

mass of the carbon atom and by symmetry Ai,j
xz = Ai,j

yz = 0

and D1,1
Rβ = D2,2

Rβ . Translational invariance requires that no

forces result from a rigid shift of the crystal, implying

∑
nj

ARβ
0i, nj ¼ 0 (4)

whence

DRβ
12(qB ¼ 0)þDRβ

11(qB ¼ 0) ¼ 0 (5)

Therefore, there are six phonon branches in graphene:

1 The acoustic flexural mode ZA (uB )Oz)

ωZA
2(qB) ¼ Dzz

11(qB)þDzz
12(qB) (6)

2 The optical flexural mode ZO (uB )Oz)

ωZO
2(qB) ¼ Dzz

11(qB) �Dzz
12(qB) 3 (7)

3,4 Two acoustic in-planemodes, withω2(qB) equal to the

eigenvalues of the 2 � 2 matrix

DRβ
11(qB)þDRβ

12(qB) (R, β ¼ x, y) (8)

5,6 Two optical in-plane modes, with ω2(qB) equal to

eigenvalues of the 2 � 2 matrix

DRβ
11(qB) �DRβ

12(qB) (R, β ¼ x, y ) (9)

If the 2D wavevector qB lies in symmetric directions,

branches (3)�(6) can be divided into longitudinal

eB )qB and transverse eB^qB modes. Due to eq 5 for

acoustic modes ω2 � q2 at qBf 0. For the ZA mode,

however, the terms in q2 disappear as well and

ωZA
2(q)� q4.13 This follows from the invariancewith

respect to rotations of a 2D crystal as a whole in the

3D space, namely, for uniform rotations of the type

uBnj ¼ δφmB� RB
(0)
nj (10)
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where δφ is the rotation angle and mB the rotation

axis in the xy-plane. These rotations should not

lead to any forces or torques acting on the atoms.

Hence,

∑
nj

Azz
0i, njr

R
n r

β
n ¼ 0 (R, β ¼ x, y ) (11)

It follows from eqs 11 and 3 that

D2

DqRDqβ
Dzz
11(qB)þDzz

12(qB)
h i

qB¼0
¼ 0 (12)

and, thus, the expansion of eq 6 starts with terms of

the order of q4; therefore,

ωZA � q2 (13)

at qB f 0. The very low frequency of ωZA for qB f 0

has important consequences for the stability and

thermalproperties aswediscussnext. In Figure1,we

show thephononspectrum14 calculatedwith the so-

called long-range carbon bond order potential

(LCBOPII)15 used in the atomistic simulations pre-

sented later.

Let us consider now the case of finite temperatures. In the

harmonic approximation, themean-square atomic displace-

ment is

uRnju
β
nj

D E
¼ ∑

λ

p

2N0Mjωλ
(eRλj)(e

β
λj)cot h

pωλ

2T

� �
(14)

where λ = (qB,ξ) are phonon labels, eB is the polarization

vector and N0 is the number of elementary cells. For in-

plane deformations at any finite temperature, the sum in

eq 14 is logarithmically divergent due to the contribution

of acoustic brancheswithω� q for qBf0. This divergence

is cut at the minimal wavevector qmin ∼ L�1 (L is the

sample size), thus

xnj
2� � ¼ ynj

2� � � T
2πMcs2

ln
L
d

� �
(15)

where cs is the average sound velocity. This result led

Landau and Peierls to the conclusion that 2D crystals

cannot exist. Strictly speaking, this means just the in-

applicability of the harmonic approximation, due to

violation of eq 1. A more rigorous treatment, however,

does confirm this conclusion (see ref 2). For R = z, the

situation is even worse, due to the much stronger

divergence of ZA phonons (eq 6). One can see from

eq 14 that

hnj
2

D E
�

T
Eat
∑
q

1
q4

�
T
Eat

L2 (16)

where Eat is of the order of the cohesive energy. Hence-

forth, we use the notation h= uz, and denote uB= (ux,uy) as

a 2D vector.
The Statistical Mechanics of Crystalline Membranes.

We have shown that the harmonic approximation cannot

be applied at any finite temperature to2D crystals neither for

in-plane nor for out-of-planemodes since the condition eq 1

is violated due to divergent contributions of acoustic long-

wavelengths modes with qf 0. In this situation, it becomes

necessary to consider anharmonic interactions between in-

plane and out-of-plane modes. In the limit q f 0, acoustic

modes can be described by elasticity.3 The corresponding

effective Hamiltonian H reads

H ¼ 1
2

Z
d2x K(r2h)2 þ μuRβ

2 þ λ

2
uRR2

� �
(17)

where the deformation tensor uRβ is

uRβ ¼ 1
2

Duβ
DxR

þ DuR
Dxβ

þ Dh
DxR

Dh
Dxβ

 !
(18)

κ is the bending rigidity and μ and λ are Lam�e coefficients.

In the deformation tensor, we have kept the nonlinear

terms in ∂h/∂xR but not ∂uγ/∂xR since out-of-plane fluctua-

tions are stronger than in-plane ones (compare eqs 15

and 16. If we neglect all nonlinear terms in the deforma-

tion tensor, then H in qB representation becomes

H 0 ¼ K
2 ∑qB

q4jhqBj2 þ
1
2 ∑qB

μq2juBqBj2 þ (λþ μ)(qB 3uBqB)
2

h i
(19)

FIGURE 1. Phonon spectrum of graphene calculated with LCBOPII.
Adapted from ref 14.



100 ’ ACCOUNTS OF CHEMICAL RESEARCH ’ 97–105 ’ 2013 ’ Vol. 46, No. 1

Prototype Crystalline Membrane Katsnelson and Fasolino

where the subscript 0 indicates the harmonic approxima-

tion and hqBand uBqB are Fourier components of h(rB) and
uB(rB), respectively, with rB = (x,y).

The correlation functions in harmonic approximation

are

G0(qB) ¼ jhqBj2
D E

0
¼ T

Kq4
(20)

DRβ
0 (qB) ¼ u�

RqB
uβqB

D E
0

¼ qRqβ
q2

T
(λþ2μ)q2

þ δRβ � qRqβ
q2

� �
1
μq4

(21)

where Æ æ0meansaveragingwith theHamiltonianH 0 (eq19).
For a surface z = h(x,y) the components of the normal are

nx ¼ �Dh
Dx

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jrhj2

q (22)

ny ¼ �Dh
Dy

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jrhj2

q (23)

nz ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jrhj2

q (24)

where rh is a 2D gradient. If |rh| , 1, the normal�
normal correlation function is related to Æ|hqB|2æ

nBqBnB�qB

D E
¼ q2 jhqBj2

D E
(25)

On substituting eq 20 into eq 25, we find

nBqBnB�qB

D E
0
¼ T

Kq2
(26)

A membrane is globally flat if the correlation function

ÆnB0nBRBæ tends to a constant as R f ¥ (normals at large

distances have, on average, the same direction). Equation

26, instead, leads to a logarithmic divergence of ÆnB0nBRBæ.
Moreover, the mean square in-plane and out-of-plane dis-

placements calculated from eqs 20 and 21 are divergent as

L f ¥ as already shown. Again, we conclude that the

statistical mechanics of 2D systems cannot be based on

the harmonic approximation. Taking into account the cou-

pling between uB and h due to the nonlinear terms in the

deformation tensor, (eq18)drastically changes this situation.

We can introduce the renormalized bending rigidity κR(q) by

writing

G(qB) ¼ T
KR(q)q4

(27)

The first-order anharmonic correction to κ is

δK � KR(q) � K ¼ 3TY
8πKq2

(28)

where Y= [4μ(λþ μ)/λþ 2μ] is the 2DYoungmodulus.1,2 At

q ¼ q� ¼
ffiffiffiffiffiffiffiffiffiffiffi
3TY
8πK2

r
(29)

the correction δκ = κ, and the coupling between in-plane

and out-of-plane distortions cannot be considered as a

perturbation. The value q* plays the same role as the

Ginzburg criterion4 in the theory of critical phenomena:

below q*, interactions between fluctuations dominate.

Note that, in the theory of liquidmembranes, there is also

a divergent anharmonic correction to κ of completely

different origin1

δK � � 3T
4π

ln
1
qd

� �
(30)

This term has sign opposite to the one of a crystalline

membrane, eq 28, and is much smaller than the latter.
In presence of strongly interacting long-wavelength fluc-

tuations, scaling considerations are extremely useful.4 Let us

assume that the behavior of the renormalized bending

rigidity κR(q) at small q is determined by some exponent η,

κR(q) � q�η, yielding

G(q) ¼ A
q4 � ηq0η

, jnBqBj2
D E

¼ A
q2 � ηq0η

(31)

where the parameter q0 = (Y/κ)1/2 of the order of d�1 is

introduced to make A dimensionless. One can assume

also a renormalization of the effective Lam�e coefficients

λR(q), μR(q) � qηu which means

u�
RqB
uβqB

D E
�

1
q2þηu

(32)

Finally, we assume that anharmonicities change eq 16

into

h2
� �

� L2ζ (33)

Thevaluesη,ηu, and ζare similar to critical exponents in the

theory of critical phenomena. They are not independent:,

ζ ¼ 1 � η=2, ηu ¼ 2 � 2η (34)

The exponent ηu is positive if 0 < η < 1. The so-called Self-

Consistent-Screening-Approximation16 gives η ≈ 0.82,

whereasamoreaccurate renormalizationgroupapproach17

yields η ≈ 0.85. This means that interactions make out-of-

plane phonons harder and in-plane phonons softer.
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The temperature dependence of the constant A in eq 27

canbe found from theassumption that eqs 20and31 should

match atq=q*, givingA=R(T/κ)ζ, whereR is a dimensionless

factor of the order of one.

Nowwe are ready to discuss the possibility of long-range

crystal order in 2D systems at finite temperatures. The true

manifestation of long-range order is the existence of delta-

function (Bragg) peaks in diffraction experiments. The scat-

tering intensity is proportional to the structure factor

S(qB) ¼ ∑
nn0
∑
jj0

Æexp[iqB(RBnj � RBn0 j0 )]æ (35)

that can be rewritten as

S(qB) ¼ ∑
nn0

exp[iqB(rBn � rBn0 )] ∑
jj0

exp[iqB(FBj � FBj0 )]Wnj,n0 j0

(36)

where

Wnj, n0 j0 ¼ Æexp[iqB(uBnj � uBn0 j0 )]æ (37)

In 3D crystals, one can assume that the displacements uBnj

and uBn0j0 are not correlated for |rBn � rBn0| f ¥ so that

Wnj, n0 j0 ¼ Æexp(iqBuBnj)æÆexp( �iqBuBn0 j0 )æ

� mj(qB)m�
j0 (qB) (38)

wheremj(qB) are Debye�Waller factors that are indepen-

dent of n due to translational invariance. Therefore, for

qB= gB (reciprocal lattice vectors), where exp(iqBrBn) = 1, the

contribution to S(qB) is proportional to N0
2, whereas for a

generic qB it is of the order ofN0. The Bragg peaks at qB= gB

are, therefore, sharp; thermal fluctuations decrease their

intensity (by the Debye�Waller factor) but do not broad-

en the peaks. The observation of such peaks is an

experimental manifestation of long-range crystal order.

In 2D, the correlation functions of atomic displacements

do not vanish as |rBn � rBn0|f ¥. Indeed, in the continuum

limit, uBnj f (uB(rB),h(rB)) and we have

Æ[h(rB) � h(rB
0
)]2æ ¼ 2 ∑

qB
Æjh(qBj2æ[1 � cos(qB(rB � rB

0
))]∼jrB � rB

0j2ζ

(39)

Æ[uB(rB) � uB(rB
0
)]2æ ¼ 2 ∑

qB
ÆjuB(qBj2æ[1 � cos(iqB(rB � rB

0
))]∼jrB � rB

0jηu

(40)

after substitutions of eqs 31 and 32.2 Thus, the approx-

imation eq 38 does not apply. As a result, the sum over n0

at a given n is convergent, and S(qB = gB)� N0; instead of a

delta-function Bragg peak we have a sharp maximum of

finite width. This means that, rigorously speaking, the

statement that 2D crystals cannot exist at finite tempera-

tures is correct. However, the structure factor of graphene

still has sharpmaxima at qB= gB and the crystal lattice can

be determined from the positions of these maxima. In

this restricted sense, 2D crystals do exist, and graphene

is a prototype example of them.
It was found experimentally by transmission electron

microscopy, that freely suspendedgrapheneat room tempera-

ture is rippled.6 The existence of these thermally induced

ripples motivated our atomistic Monte Carlo simulations7,18

summarized in the next section.

Atomistic Simulations of Structural and
Thermal Properties of Graphene
As discussed before the thermal properties of 2D crystals are

determined by longwavelength fluctuations. Therefore, one

needs to deal with large enough systems to probe the inter-

esting regime of strongly interacting fluctuations. This require-

ment rules out, in practice, first principle approaches in favor of

accurate empirical potentials. The unusual structural aspects of

graphene,make it desirable to describe different structural and

bonding configurations, beyond the harmonic approximation,

by means of a unique interatomic potential. Bond order

potentials are a class of empirical interatomic potentials de-

signed for this purpose (see15 and references therein). They

aim at describing also anharmonic effects and the possible

breaking and formation of bonds in structural phase transi-

tions. They allow to study without further adjustment of

parameters, all carbon structures, including the effect of de-

fects, edges and other structural changes, also as a function of

temperature as well as phonon spectra. We have used the so-

called long-range carbon bond order potential LCBOPII.15 Its

main innovative feature is the treatment of interplanar vander

Waals interactions, that allows to dealwith graphitic structures.

To calculate equilibrium properties as a function of tempera-

ture, we have performed Monte Carlo simulations either at

constant volume or constant pressure. We first discuss the

results for correlations functions that can be directly compared

to the scaling behavior discussed previously. Then, we report

the temperature dependenceof several structural properties of

graphene. Lastlywediscuss themeltingof graphene in relation

to its 3D counterpart, graphite, and to 2D models of melting.

Structural Properties and Scaling. We compare the

results of atomistic Monte Carlo simulations to the scaling

behavior of G(q) (eq 31). From eq 31, one can see that G(q)
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can be calculated in two ways, either by calculating directly

the correlator of h(rB) or of the normal nB(rB). In doing this, it is

important to have h(rB) and nB(rB) calculated at lattice sites

smoothened by averaging over the neighbors, as described

in detail in ref 12. Only by such a procedure one verifies

numerically eq 25 for q < 10 nm�1 which gives the limit of

applicability of a continuum description to graphene. The

interesting regime is q , q* (eq 29). For graphene at room

temperature q* = 2.4 nm�1. Since simulations are done for

samples of dimension Lx � Ly with periodic boundary con-

ditions, the smallest values of q that can be reached are

2π/Lx and 2π/Ly. For the largest samples, we have found that

straightforward Monte Carlo simulations based on indivi-

dual atomic moves could not provide enough sampling for

the smallest wavevectors. For this reason, in our first paper

on ripples in graphene,7 we were not able to check the

scaling laws in the anharmonic regime. Later, we have

reached this regime by devising a numerical technique that

we have called wave moves, where collective sinusoidal

long wavelengths displacements of all atoms where added in

the Monte Carlo equilibration procedure.18 In Figure 2 we

present Æ|nBqB|
2æ = q2G(q) calculated with wavemoves which

displays a clear change of the slope ln(G(q)) versus ln(q)

around q ∼ q*. Notice that Æ|nBqB|
2æ grows for q > 10 nm�1

reaching a maximum at the first Bragg peak. According to

thephenomenological theorydescribedbefore, the change

of scaling behavior at q, q* is related to the coupling of in-

plane and out-of plane fluctuations. To check this, we also

show in Figure 3 the correlation function Γ(q)

Γ(q) ¼ (ux )qB(h
2)�qB

D E
(41)

which becomes almost zero at q > q*. For smaller samples

the coupling is reduced as expected for a property that is

determined by the region of longwavelengths fluctuations.

The temperature dependence of the bending rigidity κ(T)

can be extracted from the Æ|nBqB|
2æ using eq 26. The results7

are shown in Figure 4where one can see the rapid growth

with temperature. This effect should not be confusedwith

the correction δκ of eq 28 since the latter is strongly

q-dependent. The temperature dependence of κ of Figure 4

cannot be described within the Self-Consistent Screening

Approximation for our model Hamiltonian eq 17.19

The temperature dependence of κ, as that of all param-

eters of phonon spectra,20 is an anharmonic effect that

goes beyond the model eq 17, namely, it does not result

from the coupling of acoustic out-of plane phonons with

acoustic in-plane phonons only. Other anharmonicities, like

coupling to other phonons, have to be invoked. This is an

example of effects that can be studied within atomistic

simulations but notwithin the elasticity theory. Thepotential

energy given by LCBOPII includes by construction anharmo-

nic effects.

Purelyanharmoniceffects are the temperaturedependence

of lattice parameter and elastic moduli. The temperature

FIGURE2. Normal-normal correlation functionq2G(q) for three samples
with indicated number of atoms N. For the largest, N = 37888, Lx =
314.82 Å, Ly = 315.24 Å. Adapted from ref 18.

FIGURE 3. Function Γ(q) for three values of N.

FIGURE 4. Temperature dependence of κ as found by fitting Æ|nBqB |
2æ to

eq 31. Adapted from ref 7.
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dependence11 of the lattice parameter a is shown in Figure 5,

and those of the shear modulus μ and adiabatic bulkmodulus

bA= λþ μ in Figure 6. Themost noticeable feature in Figure 5 is

the change of sign of da/dT, namely, a change from thermal

contraction to thermal expansion around 1000 K.

Usually thermal expansion is described in the quasihar-

monic approximation20 where the free energy is written as

in the harmonic approximation but with volume dependent

phonon frequenciesωλ. This dependence is described by the

Gr€uneisen parameters

γλ ¼ � Dlnωλ

DlnΩ
(42)

whereΩ is the volume (the area for 2D systems). In most

solids, phonon frequencies grow under compression,

which corresponds to positive Gr€uneisen parameters

and thermal expansion. Graphene and graphite are

however exceptional, as illustrated in Figure 7 presenting

the corresponding calculation with LCBOPII.14 One can

see that both the ZA and ZO branches have γ < 0 almost

in the whole Brillouin zone as found already, within

density functional calculations.22

Experimentally, graphite has a negative thermal expan-

sion coefficient up to 700 K.21 This behavior has been

explained in the quasiharmonic approximation in ref.22

For graphene, they predicted negative da/dT at all tempera-

tures. Negative thermal expansion of graphene at room

temperature has been confirmed experimentally.23 The

linear thermal expansion coefficient was about �10�5

K�1, a very large negative value. According to the quasihar-

monic theory, it was found to be more or less constant up to

temperatures of the order of at least 2000 K, in contrast to

FIGURE 5. Temperature dependence of the lattice parameter a calcu-
lated byMonte Carlo simulations at zero pressure. Adapted from ref 11.

FIGURE 6. Temperature dependence of the bulkmodulus bA and shear
modulus μ. Adapted from ref 11.

FIGURE 7. (Top) Gr€uneisen parameters calculated for graphene with
LCBOPII.14 (bottom) Phonon spectrum of graphene for the equilibrium
value of the interatomic distance 1.42 Å (red solid), and two larger
values, 1.43 Å (blue dashed) and 1.44 Å (green dotted). Courtesy of L.J.
Karssemeijer.
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the atomistic simulations of Figure 5. Thus the change of

sign of da/dT should be attributed to self-anharmonic

effects,20 namely, to direct effects of phonon�phonon

interactions. Very recently, it was confirmed experimen-

tally that da/dT, while remaining negative, decreases in

modulus with increasing temperature up to 400 K,24

which can be considered as a partial confirmation of our

prediction.

Also the temperature dependence of the shear modulus

μ, shown in Figure 6 is anomalous since typically dμ/dT < 0

at any temperature. The change of sign of dμ/dT < 0 occurs

roughly at the same temperature of da/dT. The room-

temperature values of the elastic constants are μ ≈ 10

eV/Å2 and bA ≈ 12 eV/Å2. The corresponding Young mod-

ulus Y lies within the error bars of the experimental value10

Y≈ 340( 50 Nm1�. The Poisson ratio ν= (bA� μ)/(bAþ μ) is

found to be very small, of the order of 0.1.

Melting of Graphene. Melting in 2D is usually described

in terms of creation of topological defects, like unbound

disclinations that destroy orientational order and unbound

dislocations that destroy translational order.25 In the hex-

agonal lattice of graphene, typical disclinations are penta-

gons (5) and heptagons (7) while dislocations are 5�7 pairs.

Our atomistic simulations26 have given an unexpected

scenario of the melting of graphene as the decomposition

of the 2D crystal in a 3D network of 1D chains. A crucial role

in the melting process is played by the Stone-Wales (SW)

defects, nontopological defects with a 5�7�7�5 configura-

tion. The SW defects have the smallest formation energy

and start appearing spontaneously at about 4200 K. It is the

clustering of SW defects that triggers the spontaneous melt-

ing around 4900 K in our simulations.

In Figure 8, we show a typical configuration of graphene

on the way to melting at 5000 K. The coexistence of crystal-

line and molten regions indicates a first order phase transi-

tion. The most noticeable features are the puddles of

graphene that have molten into chains. The molten areas

are surrounded by disordered 5�7 clusters, resulting from

the clustering anddistortionof SWdefects. Isolated andpairs

of SW defects are also present whereas we never observe

isolated pentagons, heptagons or 5�7 dislocations. Contrary

to graphite where melting is initiated by interplanar covalent

bond formation, in graphene it seems that 5�7 clusters act as

nuclei for themelting. By close inspection, we find that regions

with 5�7 clusters favor the transformation of three hexagons

into two pentagons and one octagon that we never see

occurring in the regular hexagonal lattice far from the 5�7

clusters. The large bonding angle in octagons, in turn, leads

to the proliferation of larger rings. Due to the weakening of

the bonds with small angles in the pentagons around them,

these larger rings tend to detach from the lattice and form

chains.

When melting is completed the carbon chains form an

entangled 3D network with a substantial amount of 3-fold

coordinated atoms, linking the chains. The molten phase is

similar to the one found for fullerenes and nanotubes (see ref

26 and references therein). Therefore, the structure of the high

temperature phase reminds rather a polymer gel than a simple

liquid, a quite amazing fact for an elemental substance.

The closest system to graphene is graphite. The melting

temperature Tm of graphite has been extensively studied

experimentally at pressures around 10 GPa, and the results

present a large spread between 4000 and 5000 K.27 With

LCBOPII, free energy calculations give Tm = 4250 K, almost

independent of pressure between 1 and 20 GPa (see refer-

ences in ref 26). At zero pressure, however, graphite sub-

limates beforemelting at 3000K.27Monte Carlo simulations

with LCBOPII at zero pressure show that, at 3000 K, graphite

FIGURE 8. Structure of graphene in the first phase of melting (top) and
when molten (bottom) at T = 5000 K. Adapted from ref 26.
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sublimates through detachment of the graphene layers. The

melting of graphene in vacuum that we have studied here

can be thought of as the last step in the thermal decomposi-

tion of graphite. Interestingly, formation of carbon chains

has been observed in the melt zone of graphite under laser

irradiation.28 Although the temperature T = 4900 K of

spontaneous melting represents an upper limit for Tm, our

simulations suggest that Tm of graphene at zero pressure is

higher than that of graphite.

Conclusions
We have shown by comparing the results of atomistic

simulations to the theory of membranes based on a con-

tinuum approach that graphene can indeed be considered a

prototypeof 2Dmembraneand that atomistic studies canbe

used to evaluate accurately the scaling properties, including

scaling exponents and crossover behavior. Conversely, the

melting of graphene is determined rather by the peculiarities

of the carbon�carbon bond and the high stability of carbon

chains than as a generic model for melting in 2D.
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